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SUMMARY 

Eigensystem analysis techniques are applied to finite difference formulations of the Navier-Stokes equations 
in one dimension. Spectra of the resulting implicit difference operators are computed. The largest eigenvalues 
are calculated by using a combination of the Frechet derivative of the operators and Arnoldi’s method. The 
accuracy of Arnoldi’s method is tested by comparing the rate of convergence of the iterative method with the 
dominant eigenvalue of the original iteration matrix. 

On the basis of the pattern of eigenvalue distributions for various flow configurations, a shifting of the 
implicit operators in question is devised. The idea of shifting is based on the power method of linear algebra 
and is very simple to implement. This procedure has improved the rates of convergence of CFD codes 
(developed at NASA Ames Research Center) by 20%-50%. The sensitivity of the computed solution with 
respect to the shf t  is also studied. Finally, an adaptive shifting of the spectrum together with Wynn’s 
acceleration algorithm are discussed. It turns out that the shifting process is a preconditioner for Wynn’s 
method. 
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Shifting of the spectrum Euler equations Iterative method Frechet derivative Eigenvalue annihilation 
Rates of convergence 

1. INTRODUCTION 

It is well known that most problems of interest in the field of aerodynamics, especially in three 
dimensions, are presently unsolvable even when the existing analytical, computational and 
experimental tools are available. In spite of this difficulty, one favourite option is to solve the 
Navier-Stokes equations on a computer. A lot of work is being done in the development of 
efficient computer codes which simulate real physical flows around arbitrary aircraft wing 
geometries. The purpose of such algorithms is to obtain accurate solutions to the Navier-Stokes 
equations using the least possible computer time. This problem of ‘accelerating’ a given flow 
calculation has attracted many mathematicians and engineers. This has resulted in the develop- 
ment of numerous methods, some of which have become standard in the realm of computational 
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fluid dynamics. Multigrid methods, preconditioning of matrices and eigenvector annihilation are 
only a few techniques to be mentioned in this context. A new approach is discussed here. 

This paper presents the problem of attaining accelerated convergence to the steady-state 
solution of the Navier-Stokes equations in one dimension. Discretization leads to an iterative 
scheme whose convergence is controlled by the eigenvalues of large, time-dependent matrices. 
These spectra are computed by using Arnoldi's method. The pattern of eigenvalues for different 
flow patterns suggests the possibility of various acceleration methods. The one presented here is 
based on shifting the spectrum of the operators in question, thus forcing the spectral radius to 
become smaller. This process speeds up the convergence of the iterative method. The results 
obtained are compared with the method of explicit eigenvalue annihilation. The shifting strategy is 
found to be superior. The amount of shift needed for a specific case depends on the ends of the 
spectrum, which is available from Arnoldi's method. Moreover, the rate of convergence is 
dependent on the shift factor. This relationship is obtained graphically by running different cases 
with varying flow parameters and is then compared with the theoretical estimates. 

The homogeneous property of the flux Jacobians proved valuable in showing that the shifting 
procedure is justified. The analysis as carried out for the Euler equations is also applicable to 
viscous flows. 

2. EQUATIONS OF FLOW AND THE ITERATIVE SCHEME 

Finite diflerence formulation of the $ow equations 

The Navier-Stokes equation for flow in an nozzle is' 

(1) 
dQ 1 d(aF) 1 dF, -+----- =s+--, 
at a ax Re ax 

where Q is the vector of conserved variables, F is the flux vector, F, is the viscous flux and S is the 
source term, which contains the information about area ratios of the nozzle. These vectors are 
given by 

Q = [  { u ] ,  F=[ ;re':;], S = [ ( l / ~ ) ~ / d x ] ,  0 Fv=[ 81. 
The equation of state is 

p = ( y -  l)(e-frpu2).  

Viscous quantities are given by 

The description of the various symbols is as follows: 

P density 
U velocity 
e 
P pressure 
Y 

total fluid energy per unit volume 

ratio of specific heats, equal to 1.4 
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a 

Pr Prandtl number 
Re Reynolds number 
C speed of sound 
P 

tion.2 In this paper we consider the inviscid case, for which F,=O. This results in 

cross-sectional area of the nozzle, equal to 1 -4x(1 -x)( l -  atbroat), where &oat is the area 
at the throat; athroat was fixed at 0.8 

dynamic viscosity of the fluid. 

Equation (1) is discretized in time by using a first-order implicit (backward Euler) approxima- 

where h = At is the time step and t = NAt. 
The flux vector F is a non-linear function of Q, so that, by the chain rule of differentiation, 

d F  dF  aQ aQ _- ---=A--, 
ax dQ ax ax 

where A=dF/dQ is the flux Jacobian. In the case of the Euler equations for a nozzle with a 
uniform grid it can be shown that F= AQ,  where the form of A can be found in Reference 3. 

In equation (2) the non-linear terms can be linearized about Q" by using a Taylor aeries. Thus 
FN+l- N - F + AN(QN+' -QN)+ O(  11 AQN 11 *), 
sN+ =sN +B"(Q"+ -Q")+ O( 1) AQ" liz), 

where BN = dSN/dQN. Using equation (2) with equations (3) together with the definition 
AQN=QN+l -Q", it follows that 

AQN l a  
~ +--[a(FN + A"AQ")] = SN + BNAQN 

h aax 

or 

) ( ::x ) I+--(aAN)-hBN h a  A Q N = h  SN---(aF") . ( adx (4) 

The spatial derivatives appearing in equation (4) are approximated by second-order central 
differences. This produces a matrix operator which is block tridiagonal. For the case of a nozzle 
with 100 grid points this gives rise to a 300 x 300 matrix. 

Boundary conditions for the nozzle. There are three dependent variables ( p , u  and p) and 
therefore three boundary conditions must be specified at the entrance/exit. The type of boundary 
conditions can be determined by examining the characteristic paths' at the boundaries. Typically, 
the values of p and u are given, together with the inlet area and the exit pressure to which the gas 
must be expanded. Linear extrapolated characteristic boundary conditions obtained thus are 
shown in Figure 1 of Section 3. Dirichlet boundary conditions are taken to be the values obtained 
from the analytic solution, as in Reference 1. 

Artijicial dissipation added to the scheme. The implicit algorithm obtained in (4) encounters 
certain stability bounds, even though linear stability analysis for implicit methods in general 
shows unconditional stability. This is especially true in strongly non-linear cases such as flows 
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with  shock^.^ In the nozzle code used herei6 a time step of h=0.3 with linear extrapolated 
characteristic boundary conditions gave rise to instability in the solution, and the residual started 
to increase after 200 iterations. 

Central differencing in space has an intrinsic property of introducing oscillations in the 
solution.6 The most common way of damping out spurious oscillations is to add to the complete 
algorithm some form of numerical dissipation with an error level that does not interfere with the 
accuracy of any physical viscous effects. This can be done by adding implicit or explicit 
dissipation. Moreover, this dissipation can be linear or non-linear. In the nozzle code a 
combination of second- and fourth-order dissipations is used. These are added explicitly for the 
RHS of equation (4) and implicitly for the block tridiagonal matrix. The exact model is explained 
in Reference 4. Second-order implicit dissipation stabilizes the algorithm and allows us to retain 
block tridiagonal inversions. The use of fourth-order dissipation matching the explicit terms 
produces larger stability bounds and enhances convergence. This will be reflected when the 
spectrum of the nozzle problem is obtained. 

Iterative solution process 

Once the boundary conditions, the fluxes, the dissipation terms, the RHS of the algorithm and 
the finite differences have been employed, the delta form (equation (4)) of the nozzle problem 
condenses to 

Here W is the matrix containing implicit smoothing, fluxes and boundary conditions, R" is the 
RHS with the source term, the viscous fluxes and any explicit dissipation terms, and QN is the 
solution vector containing the conserved variables at each grid point, given by 

W"(AQN) = RN. (44  

QN=CPi, P U I , ~ ~ ,  ~ 2 ,  pu2ye27. . . 7 P J , P U J ,  e,lT9 

where J is the number of grid points used. Inversion leads to 

AQN =(WN)- R", 
whence the solution QN" can be extracted as 

Q"+ 1 = QN + (w") - 1 RN. ( 5 )  

Q"' ' = L(QN), (6) 

Now, since (WN)-' and R" both depend upon QN, equation (5) can be written as 

where, of course, L(Q")= QN+(WN)- ' R". 
Equation (6) can be thought of as an operator equation. A study of its spectrum and 

convergence properties will be carried out in order to accelerate its convergence. When the nozzle 
algorithm is put in the form of equation (6), i.e. Q"' = L(QN), an application of L on Q means 
that the following steps have been performed: 

(a) setting up the initial conditions/data for the flow 
(b) setting up the boundary conditions 
(c) filling the block tridiagonal matrix and adding the implicit dissipation if required 
(d) computing the RHS including the source term, viscous terms and explicit dissipations terms 
(e) inverting the block tridiagonal matrix to extract the solution vector Q"' '. 

The procedure (a)-(e) is, incidentally, one iteration of the nozzle code. Thus the phrases 'iteration 
of the code' and 'application of the operator L will be used interchangeably. Furthermore, the 
term 'nozzle operator' will mean L, exceptions being notified in the context. 
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Spectrum of the nozzle operator 

Once the nozzle algorithm is written in the iterative form 

Q" ' = L(QN), (7) 

the eigenvalues of the operator L can be estimated as explained below. The approach presented 
here is fairly general, so that L can be any non-linear transformation and not necessarily the nozzle 
operator. Recall that the eigenvalues of a linear transformation T: 9M-+9M are actually the 
eigenvalues of its Jacobian, given by 

dT  a(t1, t 2 ,  . . , 9 tm) _- - 
dx d(x,, x2, . . . , x m ) '  

where 

tm=tm(xl ,  x2, . . . , xm), 

In this non-linear study it is necessary to introduce the corresponding Jacobian for L, which 
stems from the Taylor series of L(QN) about some reference vector Q*. One desirable choice for 
Q* is the converged solution itself. Thus equation (7) becomes 

Notice that the terms of the order of IIQ" - Q* 11' can be neglected when Q" approaches Q* to a 
sufficient accuracy. This is particularly true near convergence. Thus 

-Q*) 
Q"+'=L(Q*)+-(Q~- dL 

dQ* 
=--QN+L(Q*)-- dL dL 

dQ* dQ* Q* 

= A Q ~  + T(Q*), (8) 
where A = dL/dQ* and T(Q* ) = L(Q*) - (dL/dQ*)Q*. The matrix A defined here is not to be 
confused with the flux Jacobian A. From equation (8) it can be seen that 

( Q N + ~  -Q")=A(QN-QN-~ 1 9  (94  
( Q ~  + - Q*) = A(yN - Q*). (9b) 

If d, + = Q" ' - QN denotes the successive differences and en + = Q" - Q* denotes the error in 
the computed solution at  time level n +  1, then it follows from equations (9) that 

dn+l =Ad,, en + = Ae,. (10) 

Equations (10) attach a vital importance to the matrix A because of the fact that the successive 
differences and errors at any stage propagate according to the powers of A. 

It can be easily shown that the residual of the solution will also satisfy an equation similar to 
equation (10). Consequently the spectral radius of the matrix A controls the convergence of the 
nozzle problem. The eigensystem of the matrix A will be studied in detail. 
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If a grid of 100 points is imposed on the nozzle, then the solution vector Q has a dimension of 
300. In this case the Jacobian A = dL/dQ* is a 300 x 300 matrix with 90000 entries. Computation 
and storage of its elements is not entirely impossible, but still, an efficient and economic method to 
obtain its eigenvalues must be adopted. The method used here is due to Arnoldi.’ Its algorithm to 
compute the dominant eigenvalues of A is described below. 

For an arbitrary vector q l ,  define 

The algorithm then consists of the following steps. 

For k = l  to m, do 

c j k = ( $ j ,  A q k > ,  

where (x, y )  is the inner product of the vectors x and y, 
q k + l  . 

I\ q k +  1 \I ’ Q k +  1 =- 

next k. 

The m eigenvalues of C, namely cij, are the approximations to ‘some’ rn eigenvalues of A. 
Frechet derivative of L as 

Products such as Av which are needed for arbitrary v can be achieved by using the idea of the 

0 dL L(Q* + E V )  - L(Q* - E V )  
AV=---V= + O(E2). dQ* 2 E  

Another differencing which requires double the computer time, is the fourth-order Frechet 
derivative: 

dL 1 
Av=- v = = {  -L(Q* + ~ E V ) + ~ L ( Q * + E V ) - ~ L ( Q * - E ~ ) + L ( Q * - ~ E ~ ) }  +O(e4). 

In order to retain a balance between accuracy and the cost of running the code, a second-order 
differencing was adopted. It was seen that a second-order differencing was optimal with E chosen 
from the requirement 

dQ* 

II Q* I/ &=0*001 x- 
I I V I I  ’ 

where L,-norms were taken. This choice of epsilon is typical for Euler codes.* 
The eigenvalues obtained by Arnoldi’s method are good estimates to those of A =dL/dQ* for 

the ends of the spectrum.’ This means that ‘some’ of the largest eigenvalues (in absolute value) 
computed by using Arnoldi’s method will be good approximations to the actual ones. 

In practice the eigenvalues obtained by Arnoldi’s method are not necessarily the largest or the 
smallest ones of A. If v, the starting vector, is an approximation to the dominant eigenvector 
(corresponding to the eigenvalue with largest modulus) of A, then Arnoldi’s method will tend to 
converge in that direction and return a set of eigenvalues including the dominant eigenvalue. If v 
happens to be ‘some’ linear combination of a few ‘large’ eigenvectors, then the spectrum of C (the 
upper Hessenberg matrix) will contain the corresponding ‘large’ eigenvalues. But the choice of v is 
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a fairly difficult one, since the eigenvectors of A are not known in advance. Choices for starting 
vectors v are discussed in Reference 3. Typically, reasonably well-separated eigenvalues on the 
extremes of the spectrum (in this case the boundary of the unit circle) of A will appear 
as eigenvalues of the reduced matrix C for relatively small values of m. Well-separated 
interior eigenvalues can converge as fast as or faster than the clustered extreme eigenvalues. 
The eigenvalues that converge slowest in a projection method like Arnoldi’s are the ones 
that are tightly clustered in the middle of the spectrum.” 

3. RESULTS FOR THE NOZZLE PROBLEM 

In this section the results of computing the eigenvalues of the nozzle operator are presented. For 
this convergent4vergent nozzle of length 1.0, a fluid of density 1.0 enters at Mach 0553. 
The variable cross-sectional area of the nozzle is given by a(x) = 1 - 4x( 1 - x) (1 - athroat), where 
athroat = 0.8 is the area of the throat and 0 < x < 1 (Figure 1). Thus the area at the ends is 1.0 whereas 
the area of the throat is 0.8. The shock location is fixed at x=O-7. The various spectra depend on 

(a) grid size 
(b) boundary conditions-linear extrapolated characteristic BCs and Dirichlet BCs 
(c) time step 
(d) second and fourth-order dissipation terms 
(e) different phases of the convergence process. 

Case studies 

The eigenvalues of the complete Jacobian A = dL/dQ* were computed for various cases and 
serve as the reference spectrum. In applying Arnoldi’s method it is seen in general that the ‘worst’ 
eigenvalues are off in the second decimal place. The largest and the smallest ones (referred to as the 
‘ends’ of the spectrum) are accurate to within 

Grid 

As j,,, (the number of grid points) increases, the number of eigenvalues of large magnitude 
increases. For j,,, = 30 there are 12 eigenvalues greater than 0.5. This number increased to 15 for 

x = o  x = 0.5 x = l  

SUB SONIC 
INFLOW 

p =  1 
Mach= 0.553 

-- - - - --- 

e3 

--3 

__-- , - - -  

shock at 
x = 0.7 

--- - - --- 

SUB SONIC 
OUTFLOW 

p = 0.71428 
= lly 

Area = a(x) = 1- 4x(1 - x)(l - a m a t )  

Figure 1 
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-03 

j,,, = 100. This indicates that for a fine grid, when using an acceleration method such as eigenvalue 
annihilation," more eigenvalues must be annihilated in order to improve the rate of convergence 
substantially. With an increasing number of grid points it is evident from Figures 2-5 that the 
eigenvalues with large absolute values are well separated, making the nozzle code very suitable for 
an eigenvalue annihilation scheme. The eigenvalues of small magnitude are clustered near the 
origin. The eigenvalues with negative real parts (only one or two in each case) have been plotted 
such that they appear on the positive real axis. 

0 - 

0 

0 
1 I I , , 

Dissipation 

In order to study the effects of second- and fourth-order dissipation on the spectrum, the code 
with linear extrapolated characteristic boundary conditions was run for 300 time steps until the 
residual fell below 4 x lo-'. A solution at 300 iterations was thus saved. The dissipation terms 
were altered at this stage so the eigenvalues obtained correspond with this altered system of 
equations. 

Without the second-order smoothing (EPS2) the spectrum did not change much. The 
eigenvalues became slightly enlarged but the largest ones were still distinct. In the inviscid case 
with dissipation there are 15 eigenvalues with modulus greater than 0.5, and A,,,=0.969 3319. 
With second-order dissipation turned off, the effect on A,,, is minimal and A,,, = 0.969 3434. The 
larger end of the spectrum remains well separated with I A l  JEPSZ = - I I ,  JEm2 = = 0.144 434. This is 
depicted in Figure 6. 

The effect of removing the fourth-order dissipation (EPS4) was remarkable. The spectrum 
became 'inflated' and as such the smallest eigenvalues that were clustered together tended to 
become distinct as in Figure 7. The number of eigenvalues larger than 0 5  in magnitude increased 

"[ 0.2 p 

0 

0 

0 
0 

0 

0 0  

0 

0 

r O  

0 

0 

0 

o 

n 

0 

0 

O 

0 

real axis 

Figure 2 
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INVISClD NOZZLE, 50 GRID POINTS, 150 EIGENVALUES 
LINEAR BCs, SMOOTHING EPS2 & EPS4, d t z 0 . 2 ,  300 ITERATIONS 

E=c igenvr luc  - 0  4475 9hown xllh p o d l r e  resl p a n  

0.4 
0 

-0.3 I @  

0 

0 
0 

0 
0 

0 0  0 

0 

0 

0 
- 0  4 I 1 1 , 1 

real axis 

Figure 3 

INVISCID NOZZLE, 70 GRID POINTS, 210 EIGENVALUES 
LINEAR BCs, SMOOTHING EPS2 & EPS4, d t = 0 . 2 , 3 0 0  ITERATIONS 

0 

0.2 00 0 0  0 

0 0 

0 0  

a D o  

-0.3 -O'*/ 0 ° 0  

0 

-0.4 , , I D ,  I I ,  I i k I 

real axis 

Figure 4 



452 A. CHEER AND M. SALEEM 

INVISCID NOZZLE, 100 GRID POINTS, 300 EIGENVALUES 
DIRICHLET BCs, dt=0.2, 300 ITERATIONS 

@=etgenvalue? -0 839 k - 0 317 shown w i t h  posmve real part 
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0 

m 0 

-0.3 ' 1 I LA 
0.0 0.1 0.2 0.3 0 4  0.5 0.6  0.7 0.8 0.9 1.0 

real axis 

Figure 5 

INVISCID NOZZLE, 100 GRID POINTS, 300 EIGENVALUES 
LINEAR BCs, WITHOUT EPS2 SMOOTHING, dt=0.2, 300 ITERATIONS 
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Figure 6 
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INVISCID NOZZLE, 100 GRID POINTS, 300 EIGENVALUES 
LINEAR BCs, WITHOUT EPS4 SMMOTHING dt=O.Z, 500 ITERATIONS 

0 0 
0 

0 

0 

0 

0 

0 

0 
n o 

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

real axis 

Figure I 

from 15 to 39. With this alteration the largest eigenvalues occur in a complex conjugate pair, 
09502+i00845, with ) I ,  JEPS4=O-)~3JEPS4=0=0.1154. This indicates that in order to accelerate 
the convergence for this case, the effects of at least two eigenvalues (the complex conjugate pair) 
must be corrected for if an eigenvalue annihilation procedure is to be used. Moreover, as the 
number of eigenvalues of large magnitude increases, one must annihilate the contribution of more 
eigenvalues to gain the same rate of convergence. 

An experiment with the dissipation turned off entirely was performed. With the solution Q 3 O o  
saved at the 300th iteration, the eigenvalues of the nozzle operator were computed. Two 
eigenvalues with modulus greater than 1-0 were detected; see Figures 8 and 9. This was done with 
both types of boundary conditions. The total number of eigenvalues larger than 0.5 in magnitude 
increased to 42, out of which 37 were such that 111 2 06.  This experiment shows that the presence 
of a shock wave in the flow accounts for an inherent instability in the nozzle code, which is invisible 
because of the smoothing terms. Notice that this instability occurs in spite of the fully implicit 
construction of the code, even when a converged solution was used to restart the iterations. 

4. ACCELERATION METHODS 

This section deals with some existing techniques for the acceleration of convergence of iterative 
schemes. J t  gives a brief picture of eigenualue annihilation applied to the nozzle code. The resulting 
improvement in the rate of convergence by this method is obtained, but the underlying difficulty of 
the exact computation of a few large eigenvalues is well known. Powerful methods such as Wynn’s 
&-algorithm are briefly mentioned. Finally, a new method based on shifting the spectrum of the 
implicit operators is derived. This method, in spite of its simple implementation, has shown good 
results with considerable savings in computer time. 
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INVISCID NOZZLE, 100 GRID POINTS, 300 EIGENVALUES 
LINEAR BCs, SMOOTHING EPSZ=O.O,EPS4=O.O, dt=O.2, 300 ITERATIONS 
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Figure 8 

INVISCID NOZZLE, 100 GRID POINTS, 300 EIGENVALUES 
DIRICHLET BCs, SMOOTHING EPSB=O.O,EPS4=0.0, dt=0.2, 300 ITERATIONS 
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Figure 9 
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Some eigenvalue annihilation techniques 

In the one-dimensional problem of flow through a nozzle the largest few eigenvalues were 
discretely distributed. This phenomenon has been depicted in Figures 2-9. In such a case 
eigenvalue annihilation techniques based on Aitken's or Shanks' transformation' will work 
effectively. Explicit eigenvalue annihilation requires that a linear combination of two recent 
solutions be constructed as 

This improved solution Q clearly converges according to the second largest eigenvalue and 
not as I,,,. In the nozzle code with Dirichlet boundary conditions, 50 grid points, At=0.25,  
I,,, = I 1  = 0.927 and 1, = 0.79, annihilation was tested. If I ,  is annihilated, the residual starts 
falling as I , ,  which is considerably faster. In this test the residual at  200 iterations is compared for 
three cases. 

(a) Without annihilation the residual is 0.381 x 
(b) With I ,  annihilated the residual is less than 1.0 x 
(c) With Al annihilated first and I ,  annihilated after another 30 iterations the residual fell 

However, the rate of convergence of the method will eventually revert to I 1  because of non-linear 
effects. 

The idea of group annihilation is that the error associated with a number of eigenvalues is 
corrected for at the same time. This is particularly useful when the dominant eigenvalue occurs in a 
complex conjugate pair and both of them have to be annihilated at the same time. This idea is 
implemented in Reference 5. If more than two eigenvalues must be annihilated at some stage, 
existing techniques such as Wynn's &-algorithm l3-I5 can be used. It should be emphasized again 
that an exact estimate of eigenvalues to be annihilated is usually not available in advance. Wynn's 
&-algorithm assumes an error distribution based on the largest p eigenvalues and annihilates all p 
of them. It requires storage of the solution vector at  the previous p + 2 iteration levels and some 
simple algebra to deduce an improved solution. This method has been applied to the nozzle 
problemL6 to produce very good results. A method based on shifting the spectrum of A is 
presented in Section 5. 

below 1.0 x 10-l6. 

5. SHIFTING THE SPECTRUM OF THE NOZZLE OPERATOR 

The delta form of the nozzle algorithm as given in equation (4a) is 

WNAQN = RN, (12) 
where the matrix WN contains the effect of flux Jacobians, time step, area ratios, geometry of the 
nozzle, linear and non-linear dissipations. 

In the previous operator formulation of equation (12) it was shown that the solution can be 
obtained from the non-linear iterative process 

(13) QN + ' = L(QN),  
where, in conjunction with equation (12), L was given by 

L(QN)  = QN + (WN)- ' RN. 

For the sake of simplicity in further analysis we assume that the cross-sectional area of the nozzle, 
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u(x) ,  is constant. Thus in equation (12) W is given by (equation 4) 

d F  dS w = I + ha, - -h-  
dQ dQ 

= I + G ,  

where 

d F  dS 
G = ha, -- h-, 

dQ dQ 
F is the flux vector, S is the source term for the nozzle, as defined in equation (l), and 
R=h(S-a,F). Noticing that F and S are both homogeneous of degree one with respect to 
the solution vector Q, the equations 

d F  dS 
F=-Q and S=-Q 

dQ dQ 
can be exploited to establish that 

=(-hdXa+hdo dF ds) Q 

= -GQ. 

Thus equation (12) can be written as 

and 
(I + G)"AQ"= - GNQN 

Q N +  1 = QN -(I + GN)-  1 GNQN 

= [I - (I + GN)-'GN] QN 

=(I + cN)- Q", 

which is the unshifted algorithm, sometimes referred to as the generic algorithm. In deriving 
equation (14), the homogeneous property of the fluxes plays a very crucial role. 

According to the power method, a shift sI should be introduced in the iteration matrix 
I - (G" + I)- G". Since (I + GN)- appearing therein is not known, such a shift is virtually 
impossible. The remedy is to introduce a shift in the matrix W, the implicit operator of equation 
(12). With this understanding, equation (12) becomes 

(W" + s1)" AQ" = R" 

and hence the corresponding equation (1 4) becomes 

QN" = [I-(GN + I + sI)-' GN]QN 

= ( 1.t-Cr" l:s >'QN- 
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Thus the eigenvalues of the iteration matrix in equation (14) are given by 

1 A=--, 
l+gi  

where gi are the eigenvalues of the matrix GN. Similarly, the eigenvalues of the shifted iteration, 
equation (15), are given by 

l + s  - -- 
1 

A =  
l+g,/(l+s) l+s+gi. 

The shift s must be chosen as some linear combination of the eigenvalues of the iteration scheme. 
Moreover, it should be such that A, which controls the convergence of the shifted iteration, is less 
in magnitude than A,,,, which corresponds to the generic iteration scheme given in equation (14). 

One simple value of s is -(A,,, + Amin)/2, where A,,, and Amin are respectively the rightmost and 
leftmost eigenvalues of equation (14) and can be calculated in advance by using Arnoldi's method. 
Thus 

where A,,, is attained for some g=gi. Using the approximation A,,,= 1/11 +g), it follows that 
g = (l/A,,,) - 1; thus 

This equation restricts the improvement in the rate of convergence. Amax will attain some definite 
value once the ends of the spectrum of the unshifted iteration are given. For example, if I,,, and 
Imin are real and are symmetrically located about the origin, then A,,, + Amin = 0. Consequently, 
from equation (16) Amax=Amax, which means that there will be no improvement in the rate of 
convergence for such a specific case. This is expected already, since an attempt to shift an interval 
(-a, a) will only destroy its symmetry. 

The amount of improvement by shifting is Amax-Amax and can be calculated easily from 
equation (16): 

Once again it is easy to see that this difference is zero if I,,,= - Imin. Other possible breakdowns 
are A,,, = 1-0 (which means an unstable iterative scheme) and A,,,=O, for which case a positive 
shift s > 0 must be introduced. In all other cases it is clear that A,,, - A,,, will be some positive 
quantity as long as I,,, and Amin are inside the unit circle. Thus there always exists a shift s which 
will force Amax to be less than or equal to A,,,. The optimal shift will therefore make the ends of the 
spectrum symmetric with respect to the origin. 

It should be clear that the shift described here is not a linear translation as in the conventional 
linear algebraic approach. This means that each eigenvalue Ai of the original process (12) is not 
shifted (translated) by s = -(I,,, + Imi,)/2 to yield Ii - s as was originally intended. The shifting 
process adopted here defines a new and more favourable distribution of eigenvalues in which the 
largest eigenvalue is forced to become smaller in magnitude. For instance, if the generic iteration 
has I,,, = 0.5 and Amin = 0, then a shift s = -&0.5) =$ is chosen so that Ampx =$. Clearly, the 
difference in eigenvalues of the old and new iterations is A,,, - Amax = f - 4 = &, so there has been 
an improvement, but the amount of improvement is not as might have been intended. 
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For a nozzle with 50 grid points, a time step of 0.2 and linear characteristic boundary 
conditions, it has been calculated by Arnoldi's method that A,,, = 0.969 and ;Imin = - 0.4475, so the 
shift s = -$(0.969 -0.4475) = -0.26. With this shift the new dominant eigenvalue Amax is 0.959. 
Through numerical experimentation a value s = -0235 was found to be optimal. Explicit 
eigenvalue annihilation was also applied to the nozzle code. Theoretically a single annihilation 
step should improve the rate of convergence from A,,, = 0.969 to 0.838, which is the second-largest 
eigenvalue. In practice the rate of convergence reverts back to 0.969 during the course of 
iterations-a fact that has also been noticed by others." The remedy is to repeat the annihilation 
process; but, in addition to the accuracy in computing the dominant eigenvalue, the procedure 
depends on when to apply the annihilation step and how often to repeat it. Using annihilation steps 
at 100, 150,200,. . . iterations the nozzle code was run to 400 iterations. The CPU times on the 
VAX 11/780 for both the shift method and the annihilation method were found to be roughly the 
same. Table I compares the residuals at various iteration levels. Notice that the results are poor if 
A,,, was calculated to be 0968 instead of 0969. 

Table I 

Iterations 

100 200 300 400 500 lo00 
~ _ _  ~ 

Residual without shift 0 . 1 6 0 ~  lo-' 0.671 x lo-' 0 . 3 0 5 ~  0 . 1 3 7 ~  lo-' 0 . 6 1 8 ~  0 . 1 0 8 ~  
Residual with shift 0.301 x lo-' 0.107 x 0.377 x lo- '* 0.92 x - - 
Annihilating 1=0.969 0 . 1 6 0 ~  lo-' 0.313 x lo-' 0 . 3 5 2 ~  lo- '*  0 . 1 0 ~  
Annihilating %=0.968 0 . 1 6 0 ~  0 . 9 3 4 ~  lo-' 0.197 x lo-'' 0.21 x lo- ' '  

INVISCID NOZZLE, 50 GRID POINTS, 150 EIGENVALUES 
LINEAR BCs. dtzO.2, 200 ITERATIONS, SHIFT=-0.235 

0.8 

0.6 1 
0.4 

0.8 c 
-, " 1-- 1 I I I , I , 

real axis 

Figure 10 
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With this shifted version of the algorithm the spectrum of the nozzle operator was computed. At 
iteration number 200 the largest and smallest eigenvalues were found to be 0.926 and -0.922 
respectively. Notice that the shifted spectrum has A,,,,, and Amin symmetrically located about the 
origin as shown in Figure 10. Any further attempt to shift the spectrum will result in moving some 
parts of it closer to the boundary of the unit circle. On the basis of the data given above, 

residual at 200 iterations 
residual at 100 iterations 

= 0.9237. rate of convergence = 

Similar results were obtained by using Dirichlet BCs for a nozzle with 50 grid points with a time 
step of 0.25. The optimal value of the shifting parameter was -0,155, for which a comparison of 
residuals is given in Table 11. 

The shift reduced the largest eigenvalue from 0.940 to 0877 and improved the rate of 
convergence considerably. The new spectrum is depicted in Figure 11. The symmetry of the largest 

Table I1 

Iterations 

200 250 600 

Residual without shift 0.381 x 0.861 x lo-" 1.0 x 10-16  
Residual with shift 0.571 x 1 . 0 ~  - 

INVISCID NOZZLE, 50 GRID POINTS, 150 EIGENVALUES 
DlRlCHLET BCs, dt=0.25. 200 ITERATIONS, SHIFT=-0.155 

1.0 

0 6  

- 0 4  - 0  6 t 
I , I I d - 2  

- 1 0 - 0 8  - 0 6  - 0 4  - 0 2  D O  0 2  0 4  0 6  0 8  1 0  

real axis 

Figure 11 
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eigenvalues is easy to observe. The effect of eigenvalue annihilation for this case has been 
considered in Section 4. 

Finally, this procedure was carried out for a nozzle with 100 grid points and linear extrapolated 
characteristic BCs with a time step of 0.2. Table I11 summarizes the effect of shifting the iteration 
matrix by an amount s=  -0.055. 

For the unshifted case the largest and smallest eigenvalues were calculated to be 0.969 and 
-0.859 respectively. The spectrum of the shifted operator showed that the largest and smallest 
eigenvalues were 0.9601 and - 0.9613 respectively. The fact that the largest eigenvalues are almost 
symmetrical w.r.t the origin suggests that any further shift is not possible. This optimal shift 
resulted in a saving of about 20% in the number of iterations. The corresponding spectrum is 
shown in Figure 12. 

In this study the shift parameter was fixed for each individual flow through the nozzle. This 
parameter should, however, be large in the initial stages of iteration and settle down to its final 
value at convergence. 

Table I11 

Iterations 

100 200 300 400 500 

Residual without shift 0.181 x 0.856 x 0.380 x 0.169 x 0.749 x lo-' 
Residual with shift 0.435 x 0.168 x 0.291 x 0.504 x 0.850 x lo-" 

INVISCID NOZZLE, 100 GRID POINTS, 100 EIGENVALUES 
LINEAR BCs, d t = O . Z ,  500 ITERATIONS, SHIFT=-0.055 

t 
0.6 1 

3 

-0.4 1. 

I -0.6 

-0 .8 1 

c 

I 

-1.0 -0.8 - 0 . 6  -0.4 -0.2 0 0 0.2 0.4 0.6 0.8 1.0 

real axis 

Figure 12 
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Figure 13 

The eigenvalue A,,, which controls the rate of convergence of the iterative method can be 
calculated by Arnoldi’s method or estimated by 

residual at N iterations 
residual at M iterations 

rate of convergence = 

For the algorithm presented in this paper the value of Amin which appears in the expression for s 
can be estimated by Arnoldi’s method to be -0.5 for inviscid flow using a grid with 50 points and 
-0.85 using 100 grid points. With these A,,, and Amin the shift parameter can be calculated at 
different iteration levels and the process applied adaptively. 

Wynn’s algorithmI6 is very suitable in accelerating the convergence of the nozzle problem. 
Together with an adaptive shifting of the spectrum, Wynn’s method produced even better results. 
Adaptive shifting can therefore be considered as a preconditioner of Wynn’s method. 

Sensitivity of the solution w.r.t. shiji 

The shift parameter is found to depend strongly on the eigenvalue distribution of the operators. 
This was confirmed by the fact that a different shift was required for each class of problems. 
Moreover, for different values of s the rates of convergence were calculated and plotted. For a 
nozzle with 50 grid points and linear extrapolated characteristic BCs, various cases were run by 
changing s. The rates of convergence at 200 time steps were obtained and plotted against s. Figure 
13 shows that there is an optimal value of s beyond which the solution fails to converge as fast. 
This optimal value is s= -0.235. A similar behaviour was noticed when the flow was started with 
Dirichlet BCs. 

The optimal value of s as suggested by the formula s= -&,ax+Amin) is -0.25, whereas the 
value obtained from the plotted experimental data is - 0 2 3 5 .  The corresponding spectrum with 
s= -0.235 is shown in Figure 10. 

6. CONCLUSIONS 

Shifting of the spectrum is a very simple but powerful idea. It stems from the usual power method of 
linear algebra. The amount of shift to be employed depends on the eigenspectrum of the problem 
in question. This is where the entire difficulty lies, but Arnoldi’s method is an economical solution 
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to this problem. Since it extracts the ends of the spectrumg very efficiently and accurately, it can be 
used to compute A,,, and Amin. In the one-dimensional nozzle problem with 100 grid points 
Arnoldi’s method gave a good estimate of A,,, and Amin by using an additional 20 iterations of the 
code. This is small as compared to the amount of savings produced. Arnoldi’s method actually 
pays for itself when used for shifting the spectrum of any linear or non-linear transformation. In 
using Arnoldi’s method for computing spectra of non-linear operators, the corresponding 
eigenvectors could always be obtained at no extra cost. These eigenvectors, which belonged to a 
certain Krylov subspace, formed an orthogonal system under some assumptions.” Arnoldi’s 
method gave more information about the operators than was utilized in this paper. 

The strategy of shifting the spectrum of implicit operators used in this paper was also applied to 
ARC2D, a two-dimensional problem. The results will be presented in a future paper.” 
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